
ManagingManaging
MicroservicesMicroservices

EffectivelyEffectively
Daniel Hall (@smarthall)Daniel Hall (@smarthall)



About MeAbout Me
Systems Engineer at LIFX
Making the 'Internet' in the Internet of Things



About This TalkAbout This Talk
This is how we do things at LIFX
Feel free to ask questions as we go
It works for us, it might not work for you
Think about how each bit fits into your situation



Step One: Write your appsStep One: Write your apps
You may not get input into this part
Micro services are popular at the moment
Design pattern that works with continuous delivery



MicroservicesMicroservices
Try to keep as much state outside your apps
Don't make them too small, they're not nanoservices
Don't make them too big, they're not milliservices
Each service should be

Replacable
Independently Deployable
Have a single capability (billing, authentication)

Think about information flow and circular
dependencies



The Hype CurveThe Hype Curve

Jeremy Kemp CC-BY-SA

(http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg)

Microservices



Step Two: PackagingStep Two: Packaging
All dependencies need to be available
Needs to be small or cachable

Faster install means faster deployments
You might want multiple versions on the same
machine
Preferably it works in several environments



DockerDocker
Filesystem layers stacked on top of each other
Uses Linux containers to isolate applications
You can run a local Docker registry

Security
Speed

You can run it locally in dev and on your servers
Less of 'it works on my laptop'
Minuscule performance hit compared to VMs



The Hype CurveThe Hype Curve

Jeremy Kemp CC-BY-SA

(http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg)

Docker



Step Three: DeploymentStep Three: Deployment
As fast as possible
Preferably minimal interaction
Recovery from failures



Mesos/MarathonMesos/Marathon
Mesos manages tasks running on a cluster
Marathon coordinates long running jobs
You submit a JSON job description to Marathon
Marathon handles switching from the old app to new
Marathon will also handle task failure and recover
Health checks ensure broken tasks get replaced



The Hype CurveThe Hype Curve

Jeremy Kemp CC-BY-SA

(http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg)

Mesos/Marathon



Extra Credit: ShedulingExtra Credit: Sheduling
Some things need to run repeatedly
Cron works, but its not really HA
HA Crons exist but can be complex
Your cluster probably has spare capacity



ChronosChronos
Chronos runs your scheduled tasks in Mesos
Uses ISO8601 intervals to specify schedules
Use your spare capacity for repeating tasks
Can rerun failing jobs
Can handle job dependencies
Records stats on run times for jobs



The Hype CurveThe Hype Curve

Jeremy Kemp CC-BY-SA

(http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg)

Chronos



SummarySummary



DemoDemo
https://github.com/smarthall/ansible-mesos



Demo Time!Demo Time!
All the code is on Github

https://github.com/smarthall/ansible-mesos
'vagrant up' will give you a development cluster
'./init-cluster.sh' will add some sample apps


