

Flying with Linux

Porting an autopilot to Linux – Part 2
Andrew Tridgell

LCA last year
● Initial port of ArduPilot to Linux
● Base design of PXF sensor cape done, but not built yet
● Didn't know how much of the autopilot code could realistically run on Linux

Existing System Design

New System Design

PixHawk Fire Cape

In the last year...

● ArduPilot is now regularly flying on Linux
● multiple ports of ArduPilot have been done to a

variety of different boards
● Autopilots based on ArduPilot on Linux are now

commercially available

Flight Demonstration
Live demo from Canberra, Australia
● Skywalker 2013 electric model
● BeagleBoneBlack with PXF cape
● ArduPilot 3.2.1
● Compilng Linux kernel while flying on same CPU

Demo Setup

● BeagleBoneBlack running Debian
– 3.8.13-RT kernel

– ArduPilot 3.2.1

● Sensors
– MPU9250 accel/gyro on SPI

– MS5611 barometer on SPI

– Ublox Lea6H GPS on 38400 UART

– HMC5883 compass on I2C

– MS4525DO airspeed sensor on I2C

● IO
– SBUS input via PRU2

– PWM output via PRU1

– two telemetry radios (for MAVLink and shell access)

Autopilot boards and ports

● Flying ports developed over the last year
– PXF/BBB from 3DRobotics

– Erle Brain from Erle Robotics (PXF on BBB cape)

– NavIO and NavIO+ RPi capes from Emlid

● Prototype ports
– I.MX6 port within 3DRobotics

– Zynq ARM+FPGA port by John Williams

– BBBMini port by Mirkix

I2C and SPI

● Fast sensors on SPI
– using /dev/spidev interface, user-space drivers

– works very well!

– able to handle 4k SPI transactions per second with 25% CPU load on BBB

– no DMA used due to DMA overhead for small transfers (typically a transfer is
around 20 bytes)

● Slower sensors on I2C
– using /dev/i2c smbus API, drivers in user space

● Why user space?
– common drivers across multiple operating systems, using AP_HAL abstraction

● Moving to uavcan in future to replace most I2C

Scheduling

● 6 realtime (FIFO scheduled) threads
– timer thread (1kHz timer, for regular tasks)

– UART thread for all UART serial operations

– RCIN thread for processing RC input pulses

– main thread for core autopilot code

– tonealarm thread for buzzer sounds

– IO thread for all filesystem IO (logging, parameters
and terrain data)

Scheduling Overrun

● Long scheduling overrun discovered
– discovered while preparing for this talk

– 11 hour test, building kernel on microSD while
ardupilot running on BBB

– 50Hz main loop, so 20ms expected loop time

– Out of 2M loops executed, 19 were over 30ms

– one was over 40ms – that took 1.7 seconds!

– the challenge now is to find the cause and fix it

PRU Code

● Programmable Realtime Units
– two PRUs on BeagleBoneBlack

– 200MHz simple CPUs

– access to 8k of shared memory with ARM

– direct access to I/O pins

– C Compiler available (not complete, but usable)

High rate timing task – RC Input

● Some tasks need microsecond precision
– RC Input

● PPM-SUM (multi-channel pulse width based RC-input)
● SBUS (100kbaud inverted serial RC input)
● DSM (115200 baud serial RC-input with framing)

– We needed a solution that was as generic as possible
● In AP_HAL each board calls process_rc_pulse() for each state

change of pin
● Commonly implemented using a ring buffer (pulse train)
● Generic software decoder handles all 3 protocols in parallel
● Decoding of multiple baud rates on one pin (protocol framing to

avoid ambiguity)
● Avoids the need for multiple UARTs for RC input

BeagleBoneBlack PRUs

● PRU1 used for RC Input
– watches for state change on 1 pin

– writes timing of state changes to a ring buffer

– ARM code consumes entries from ring buffer, calling
process_rc_pulse()

– just 70 lines of C code on PRU

● PRU2 used for PWM output
– shared buffer of PWM channel pulse width frequency

– continuously reads shared buffer and updates 12 channels

– just 235 lines of C on PRU

Outback Challenge 2014

DroneCode.org

● New umbrella organisation for free software UAV
development
– Part of Linux Foundation Collaborative Projects

– Forum for collaboration between projects, users and
companies using the technology

● First conference
– First DroneCode conference at ELC in San Jose in

March 2015

– Come along!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

