
  

Botching Up IOCTLs

Daniel Vetter, Intel OTC
LCA Auckland 2015



overview

● basics: testcases, interface type, ...
● technicalities for proper ABI design
● special topics like resource handling, signals, 

time, ...



  

basics: interface type

● (generic) IOCTL or syscall?
● read/write/poll on an FD
● sysfs, configfs, debugfs, …
● extend existing subsystesm like perf



  

basics: real-world userspace

● tested, reviewed, ready for merging
● production code (corner cases, errors all 

handled)
● BUT: always merge kernel patches first



  

basics: testcases

● for everything
● FOR EVERYTHING
● focus on evil corner-cases



  

technicalities: struct ABI

● goal: no compat layer
● only use __s32, __u32, __s64 and __u64

● if you have any 64 bit members: align/pad 
everything to 64 bit

● pointers are __u64

● __attribute__((packed)) plus explicit 
padding when you screwed up



technicalities: input validation

● unchecked stack garbage breaks extendability
● unchecked evil input scores CVEs
● overflows (careful with variable-sized arrays)
● invalid combinations&values
● have testcases for everything



technicalities: flags

● have a flags parameter
● reject invalid flags with ­EINVAL

● have a testcase
● specifically check for: invalid flag combinations, 

unused values in bitfields and the next available 
flag



technicalities: compatibility

● hide big things for 1-2 kernel releases
● flags, driver caps, userspace caps for opt-in, 

interface revisions
● remember: it's only a regression when you get 

a bug report



technicalities: endianess

● it's horrible
● but the world is mostly little-endian



  

resources

● attach everything to a struct file

● consider standard file types like dma-buf, 
fences, ...

● support O_CLOEXEC



resources: sharing

● private namespace ok when there's tons of 
objects

● but don't reinvent resource passing/sharing
● consider uniqueness requirements
● proper fstat() unfortunately needs a full 

virtual fs



resources: access & revoke

● consider revoke support for 
global&unshareable resources

● required for proper session switching
● priviledged operation
● properly isolate other objects (e.g. gpu buffers)



signals

● it's UNIX, no way to avoid them
● man (7) signal: „slow“ devices can return 

-EINTR, others restart by default
● „slow“ devices unclear disdinction and 

autorestart are fragile



  

signals: solutions

● userspace simply handles -EINTR correctly in 
all cases

● or don't support signals when blocking



signals: killable waits

● nice, but
● process exit doesn't necessarily close file
● E.g. logind has dup'ed FD for revoke
● hard to test ­EINTR code in the kernel



signals: „Stop worrying and ...“

● restarting makes testing error paths trivial
● the more interruptible waits you have the better
● duplicate all your functional tests with one 

where the main thread gets interrupted all the 
time

● inject ­EINTR for testing



signals: summary

● support full restarting
● shared fooIoctl() in userspace to enforce 

proper restarting even for ­EINTR

● exploit ­EINTR for testing error paths

● or only do blocking on pollable FDs



● make the clocksource clear to userspace, 
different clocks will mismatch

● prefer CLOCK_MONOTONIC

● allow userspace to sample hw clocks
● __s64 seconds + __u64 nanoseconds for 

structs (to match ktime), enforce normalization

time: sampling



● seriously consider pollable FDs
● support absolute timeouts
● convert relative to absolute for restarting

time: waiting



● prefer executable specs
● manpages for generic interfaces
● forget about Documentation/ABI ... maybe

documentation



summary

● real world user
● testcases, testcases, testcases
● don't screw up technicalities too badly, see 

http://blog.ffwll.ch/2013/11/botching-up-ioctls.html
● think about documentation

http://blog.ffwll.ch/2013/11/botching-up-ioctls.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

