Botching Up IOCTLs

Daniel Vetter, Intel OTC
LCA Auckland 2015

overview

* basics: testcases, interface type, ...
 technicalities for proper ABI design

» special topics like resource handling, signals,
time, ...

basics: interface type

(generic) IOCTL or syscall?
read/write/poll on an FD
sysfs, configfs, debudfs, ...

extend existing subsystesm like perf

basics: real-world userspace

 tested, reviewed, ready for merging

» production code (corner cases, errors all
handled)

 BUT: always merge kernel patches first

basics: testcases

 for everything
e FOR EVERYTHING
e focus on evil corner-cases

technicalities: struct ABI

e goal: no compat layer
u32, s6d4and u64

* If you have any 64 bit members: align/pad
everything to 64 bit

e Only use __ s32,

e pointers are ___u64

e __attribute__ ((packed)) plus explicit
padding when you screwed up

technicalities: input validation

uncnec

uncnec

KEC

KEC

stack garbage breaks extendability
evil input scores CVEs

overflows (careful with variable-sized arrays)

invalid combinations&values

have testcases for everything

technicalities: flags

have a flags parameter
reject invalid flags with —-EINVAL
have a testcase

specifically check for: invalid flag combinations,
unused values In bitfields and the next available
flag

technicalities: compatibility

* hide big things for 1-2 kernel releases

 flags, driver caps, userspace caps for opt-in,
Interface revisions

 remember: it's only a regression when you get
a bug report

technicalities: endianess

e |t's horrible
* but the world is mostly little-endian

resSources

e attach everythingto a struct file

» consider standard file types like dma-buf,
fences, ...

e support O_CLOEXEC

resources: sharing

e private namespace ok when there's tons of
objects

* but don't reinvent resource passing/sharing
e consider unigueness reguirements

e proper £stat () unfortunately needs a full
virtual fs

resources: access & revoke

» consider revoke support for
global&unshareable resources

* required for proper session switching
 priviledged operation

» properly isolate other objects (e.g. gpu buffers)

sighals

 it's UNIX, no way to avoid them

 man (7) signal: ,slow“ devices can return
-EINTR, others restart by default

e slow" devices unclear disdinction and
autorestart are fragile

signals: solutions

» userspace simply handles -EINTR correctly Iin
all cases

» or don't support sighals when blocking

signals: killable walts

nice, but

process exit doesn't necessarily close file
E.g. logind has dup'ed FD for revoke
hard to test —-EINTR code in the kernel

signals: ,,Stop worrying and ..."

restarting makes testing error paths trivial
the more interruptible waits you have the better

duplicate all your functional tests with one
where the main thread gets interrupted all the

time
Inject —-EINTR for testing

signals: summary

» support full restarting

e shared fooIoctl () In userspace to enforce
proper restarting even for —-EINTR

e exploit —-EINTR for testing error paths
» or only do blocking on pollable FDs

time: sampling

 make the clocksource clear to userspace,
different clocks will mismatch

e prefer CLOCK_MONOTONIC
» allow userspace to sample hw clocks

e s64seconds+ u64 nanoseconds for
structs (to match kt ime), enforce normalization

time: waiting

» seriously consider pollable FDs
* support absolute timeouts
» convert relative to absolute for restarting

documentation

» prefer executable specs
* manpages for generic interfaces
e forget about Documentation/ARI ... maybe

summary

real world user
testcases, testcases, testcases

don't screw up technicalities too badly, see
http://blog.ffwll.ch/2013/11/botching-up-ioctls.html

think about documentation

http://blog.ffwll.ch/2013/11/botching-up-ioctls.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

