

Open Source OpenGL on the
Raspbery Pi

Eric Anholt
Broadcom

Outline

● Raspberry Pi architecture
● Previous SW architecture
● New SW architecture
● Raspberry Pi challenges

Raspberry Pi HW architecture

● ARM CPU (700Mhz ARMv6)
● VPU

– loads a small OS from SD card, executes it to run
code to turn on the ARM and send it into its
bootloader

● QPU
– GLES2 3D engine

– Tiled renderer

Raspberry Pi SW architecture

● VPU GLES2 driver side
– custom vendor driver

– closed source

– Generates shaders and command stream for the QPU

● ARM GLES2 driver side
– ships GL command stream to VPU

– 3-clause BSD code dump

– Not useful to open source developers

How I got here

● Intel graphics developer for 8 years.
● Looking for a chance to fix Android graphics.

– I wish my phone would stop crashing

● Broadcom released specs and source February 28, 2014
– VPU driver stack ported to ARM for a cell phone chip

– 3-clause BSD license

– Android-only

– No GLX or non-Android EGL components.

● Joined Broadcom June 16

A new driver project

● Free software Mesa driver (MIT licensed)
running on the ARM
– OpenGL, GLESv2 support

– GLX, EGL support.

● Free software DRM kernel driver
– Target upstream merging

● xf86-video-modesetting 2D driver for X11

Development under simulation

● simpenrose is the closed source HW simulator
● small C library with about 4 entrypoints
● Built an “i965” driver on my x86 system.

– Allocate GEM buffers from i915 kernel

– Talk DRI3 to the native 2D driver

– generate vc4 code, execute in simulator, copy result to GEM buffers.

● I can print registers!
● I can gdb when the “GPU” crashes!
● I can valgrind!
● (I can sometimes forget to test on the real hardware before pushing

code)

Simple hardware makes it easy

● 110 page hardware spec
– compared to 1727 for the first hardware I worked on

at Intel

● 9 state packets for GL state
● 6 state packets for GL draw call setup
● 8 state packets for binner setup
● demo code from Scott Mansell in 340 lines

Simple hardware means more work

● Many areas of OpenGL handled in shaders
– vertex fetch format conversion

– user clipping
– shadow mapping
– blending
– logic ops
– color masking
– point sprites
– alpha test
– two-sided color
– texture rectangles
– some wrap modes

Desktop OpenGL on a GLES2 part

● GL_QUADS turn into GL_TRIANGLES with an index buffer.
● 32-bit index buffers trimmed to 16 bit
● Turn GL_CLAMP to clamping texture coordinates to [0,1]
● 0 occlusion query counter bits
● shadow map texturing
● Not done:

– Polygon/line stipple

– Polygon fill modes / edge flag

– 3D textures

– derivatives in shaders

– LOD clamping

Funny QPU architecture

● Each instruction contains 2 operations
– 1 ADD, 1 MUL

● Each operation has 2 arguments
● Only 1 address into each register file (A/B) available

– except arbitrary access to accumulators r0-r3

● No ability to spill registers

fadd ra0, r3, ra0 ; fmul r3, rb2, rb2

Register allocation solution

● Standard (Runeson/Nyström) graph-coloring register
allocator
– register file A/A and B/B conflicts handled by reserving one

register each from A and B and spilling into them

– Most nodes in the normal register class, unpacks (pick 8 bit
unorm channel, expand to float) are an A-only register class

● Generate stream of single-operation instructions
● Instruction scheduler attempts to pair up operations

– Converts ADD-based MOVs into MUL-based MOVs to fit

– Convert some regfile A references into regfile B references

Register allocation future plans

● Extend the current allocator to give the driver a
chance to choose a preferred register during
Select.

● Try a pre-pass splitting registers into A or B with
MOVs in between, then try register coalescing
during allocation?

● Try a bottom up, linear scan allocator.
● Possibly an entirely different SSA allocator`

SSA?

● GLSL IR->TGSI->QIR->QPU is the current compiler
architecture.

● QIR is SSA, with no control flow
● Need control flow for ES conformance

– GLSL IR loop unroller is not so hot

● NIR landed this morning
● GLSL IR->TGSI->NIR->TGSI->QIR->QPU works
● GLSL IR->TGSI->NIR->QIR->QPU is almost working
● Pie-in-the-sky future of GLSL IR->NIR->QIR->QPU.

No MMU under the GPU

● GPU has direct access to system memory
● Requires contiguous memory allocations

– CMA support in the kernel helps a lot

● Huge security hole
– Ask the vertex fetcher to fetch arbitrary memory

– Ask the texture unit to fetch arbitrary memory

– Ask the tile buffer to store to arbitrary memory!

MMU solution

● Not handled in the closed stack
● vc4 DRM driver does validation

– Parse shaders, decide which uniforms read from textures
● Make sure read addresses are clamped!

– Parse uniforms, make sure they reference valid textures

– Parse command stream
● decide whether vertex reads are from valid memory
● decide whether the tile buffer is loaded/stored to valid memory

● Costs about 5% of ARM CPU time
● Scariest code I've ever written

Other kernel execution details

● drm_gem_cma_helper.c based BO allocation
– thin VC4 wrapper around them to track the BO's presence in the GPU

command queue and in the BO cache

● in-kernel BO cache
– binner needs arbitrary amounts of memory at runtime, triggered by

GPU interrupts

● 3 ioctls
– SUBMIT_CL

– WAIT_SEQNO

– WAIT_BO

– (oh wait, and CREATE_DUMB and MAP_DUMB)

Kernel details: KMS

● Currently abusing the VPU firmware's
modesetting for bringup
– Ask it to set up a framebuffer for us with 1680x1050

– Smash the HVS display list to scan out of our GEM
BO instead

● Oh, and assume ARGB8888 and untiled

● Need something better

KMS plans

● Most hardware has a few scanout planes (display, overlay,
cursor)

● VC4 has the HVS display list
– series of rect, format, address

– At each scanline, hardware reads the list, finds intersection with
rects, reads lines from src, blends/replaces as appropriate

– Number of planes limited only by memory bandwidth and
number of rects that can be stored

● Expose this as a steaming pile of KMS planes, and atomic
modeset that sometimes says “no.”

X11 plans

● With Present, X now asks the driver to set a CRTC's
scanout at a specific vblank.

● What if X instead asked to set a CRTC's scanout to a set of
planes?

● driver could ask KMS to set the planes, and if KMS says
“no”, X could manually composite some of the planes down

● Initially fallback using GL, but the HVS has some magic
● X could implement any CopyArea to the screen as an

overlay
● Well, unless other userspace might have another reference to that buffer.

Merging kernel upstream

● Raspberry Pi maintains a vendor kernel tree
– non-devicetree-based
– 3.16 in rasbpian
– Huge squash commits of rebased code

● My tree is based on a Raspberry Pi tree
– kernel 3.15
– couple of hacks to core DRM
– 59 other commits to build up the driver

● Upstream has limited support for the 2835.
– USB (for networking) support may now be landing
– No mailbox to the VPU
– No CPU clock control
– No sound

Kernel upstreaming blockers

● Need bootable upstream RPi kernel
● Need mailbox driver for upstream RPi kernel
● Need to fix critical vc4 ABI issues

– Introduce our own create/map ioctls (Hi Dave!)

– New single-GEM handle CL packet?

– Avoid GEM handle CL packets in some other packet
typess?

– Redo relocations entirely?

● Need review on shader validation

Status

● 14530 lines 3D driver code
● 4971 lines kernel code

– 1/3 is shader/command stream validation!

● 98.7% passrate on ES2 conformance tests
(simulation)

● 92.5% passrate on piglit GPU tests (simulation)
● Hacked-up KMS works on my monitor, but not

yours

Links

● TODO list and build instructions for free
software driver:
– http://dri.freedesktop.org/wiki/VC4/

● Hardware specification:
– http://www.broadcom.com/docs/support/videocore/

VideoCoreIV-AG100-R.pdf
● Broadcom sample implementation:

– https://github.com/simonjhall/challenge

http://dri.freedesktop.org/wiki/VC4/
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://github.com/simonjhall/challenge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

