Open Source OpenGL on the
Raspbery Pi

Eric Anholt
Broadcom



Raspberry Pi arc

Previous SW arc

Outline

nitecture

nitecture

New SW architecture

Raspberry Pi challenges



Raspberry Pi HW architecture

. ARM CPU (700Mhz ARMv6)

 VPU

- loads a small OS from SD card, executes it to run
code to turn on the ARM and send it into its
bootloader

« QPU
- GLESZ2 3D engine
- Tiled renderer



Raspberry PI SW architecture

e VPU GLES2 driver side

- custom vendor driver
- closed source
- Generates shaders and command stream for the QPU

« ARM GLES2 driver side

- ships GL command stream to VPU
- 3-clause BSD code dump
- Not useful to open source developers



How | got here

Intel graphics developer for 8 years.

Looking for a chance to fix Android graphics.

- | wish my phone would stop crashing

Broadcom released specs and source February 28, 2014
- VPU driver stack ported to ARM for a cell phone chip

- 3-clause BSD license

- Android-only
- No GLX or non-Android EGL components.

Joined Broadcom June 16



A new driver project

* Free software Mesa driver (MIT licensed)
running on the ARM

- OpenGL, GLESVZ2 support
- GLX, EGL support.

* Free software DRM kernel driver
- Target upstream merging
» xf86-video-modesetting 2D driver for X11



Development under simulation

simpenrose is the closed source HW simulator
small C library with about 4 entrypoints

Built an “i965” driver on my x86 system.

- Allocate GEM buffers from i915 kernel
- Talk DRI3 to the native 2D driver
- generate vc4 code, execute in simulator, copy result to GEM buffers.

| can print registers!
| can gdb when the “GPU” crashes!
| can valgrind!

(I can sometimes forget to test on the real hardware before pushing
code)



Simple hardware makes it easy

* 110 page hardware spec

- compared to 1727 for the first hardware | worked on
at Intel

e O state packets for GL state
» 6 state packets for GL draw call setup

» 8 state packets for binner setup
e demo code from Scott Mansell in 340 lines



Simple hardware means more work

 Many areas of OpenGL handled in shaders

- vertex fetch format conversion
— user clipping

- shadow mapping
- blending

- logic ops

- color masking

— point sprites

- alpha test

- two-sided color

- texture rectangles
- some wrap modes



Desktop OpenGL on a GLES2 part

« GL_QUADS turn into GL_TRIANGLES with an index buffer.
« 32-bit index buffers trimmed to 16 bit

* Turn GL_CLAMP to clamping texture coordinates to [0,1]

» 0 occlusion query counter bits

« shadow map texturing

 Not done:

- Polygon/line stipple

- Polygon fill modes / edge flag
- 3D textures

- derivatives in shaders

- LOD clamping



Funny QPU architecture

Each instruction contains 2 operations
- 1ADD, 1 MUL
Each operation has 2 arguments

Only 1 address into each register file (A/B) available
— except arbitrary access to accumulators rO-r3
No ability to spill registers

fadd ra®, r3, ra®@ ; fmul r3, rb2, rb2



Register allocation solution

« Standard (Runeson/Nystrom) graph-coloring register
allocator

- register file A/A and B/B conflicts handled by reserving one
register each from A and B and spilling into them

- Most nodes in the normal register class, unpacks (pick 8 bit
unorm channel, expand to float) are an A-only register class

« Generate stream of single-operation instructions

* |nstruction scheduler attempts to pair up operations

- Converts ADD-based MOVs into MUL-based MOVs to fit
- Convert some redfile A references into regfile B references



Register allocation future plans

* Extend the current allocator to give the driver a
chance to choose a preferred register during
Select.

* Try a pre-pass splitting registers into A or B with
MOVs In between, then try register coalescing
during allocation?

* Try a bottom up, linear scan allocator.

* Possibly an entirely different SSA allocator



SSA?

GLSL IR->TGSI->QIR->QPU is the current compiler
architecture.

QIR i1s SSA, with no control flow

Need c

ontrol flow for ES conformance

— GLSL IR loop unroller is not so hot

GLSL |
GLSL |

NIR landed this morning

R->TGSI->NIR->TGSI->QIR->QPU works
R->TGSI->NIR->QIR->QPU is almost working

Pie-in-t

ne-sky future of GLSL IR->NIR->QIR->QPU.



No MMU under the GPU

 GPU has direct access to system memory

* Requires contiguous memory allocations

- CMA support in the kernel helps a lot
* Huge security hole

- AS
- As
- AsS

K 1
K 1

K 1

ne vertex fetcher to fetch arbitrary memory
ne texture unit to fetch arbitrary memory

ne tile buffer to store to arbitrary memory!



MMU solution

 Not handled in the closed stack

 vc4 DRM driver does validation

- Parse shaders, decide which uniforms read from textures
 Make sure read addresses are clamped!
- Parse uniforms, make sure they reference valid textures

- Parse command stream

» decide whether vertex reads are from valid memory
» decide whether the tile buffer is loaded/stored to valid memory

e Costs about 5% of ARM CPU time
e Scariest code I've ever written



Other kernel execution detalls

 drm_gem_cma_helper.c based BO allocation

- thin VC4 wrapper around them to track the BO's presence in the GPU
command queue and in the BO cache

* in-kernel BO cache

- binner needs arbitrary amounts of memory at runtime, triggered by
GPU interrupts

e 3ioctls

- SUBMIT_CL

- WAIT_SEQNO

- WAIT_BO

- (oh wait, and CREATE_DUMB and MAP_DUMB)



Kernel details: KMS

* Currently abusing the VPU firmware's
modesetting for bringup

- Ask it to set up a framebuffer for us with 1680x1050

- Smash the HVS display list to scan out of our GEM
BO instead

« Oh, and assume ARGB8888 and untiled
 Need something better



KMS plans

* Most hardware has a few scanout planes (display, overlay,
cursor)

* VC4 has the HVS display list

— series of rect, format, address

- At each scanline, hardware reads the list, finds intersection with
rects, reads lines from src, blends/replaces as appropriate

- Number of planes limited only by memory bandwidth and
number of rects that can be stored

» Expose this as a steaming pile of KMS planes, and atomic
modeset that sometimes says “no.”



X11 plans

 With Present, X now asks the driver to set a CRTC's
scanout at a specific vblank.

« What If X Instead asked to set a CRTC's scanout to a set of
planes?

e driver could ask KMS to set the planes, and if KMS says
“no”, X could manually composite some of the planes down

« |nitially fallback using GL, but the HVS has some magic

e X could implement any CopyArea to the screen as an
overlay

« Well, unless other userspace might have another reference to that buffer.



Merging kernel upstream

* Raspberry Pi maintains a vendor kernel tree
- non-devicetree-based
- 3.16 in rasbpian
- Huge squash commits of rebased code
* My tree is based on a Raspberry Pi tree
- kernel 3.15
- couple of hacks to core DRM
- 59 other commits to build up the driver
« Upstream has limited support for the 2835.
- USB (for networking) support may now be landing
- No mailbox to the VPU
- No CPU clock control
- No sound



Kernel upstreaming blockers

Need bootable upstream RPi kernel
Need mailbox driver for upstream RPI kernel

Need to fix critical vc4 ABI issues
- Introduce our own create/map ioctls (Hi Dave!)
- New single-GEM handle CL packet?

- Avoid GEM handle CL packets in some other packet
typess?

- Redo relocations entirely?
Need review on shader validation



Status

e 14530 lines 3D driver code

e 4971 lines kernel code
- 1/3 Is shader/command stream validation!

e 98.7% passrate on ES2 conformance tests
(simulation)

» 92.5% passrate on piglit GPU tests (simulation)

 Hacked-up KMS works on my monitor, but not
yours



Links

e TODO list and build instructions for free
software driver:

— http://dri.freedesktop.org/wiki/\VC4/
» Hardware specification:

- http://www.broadcom.com/docs/support/videocore/
VideoCorelV-AG100-R.pdf

 Broadcom sample implementation:
- https://github.com/simonjhall/challenge


http://dri.freedesktop.org/wiki/VC4/
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://github.com/simonjhall/challenge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

